Transient inactivation of the thylakoid photosystem II light-harvesting protein kinase system and concomitant changes in intramembrane particle size during photoinhibition of Chlamydomonas reinhardtii

نویسندگان

  • G Schuster
  • M Dewit
  • L A Staehelin
  • I Ohad
چکیده

Light-dependent reduction of the plastoquinone pool regulates the activity of the thylakoid-bound protein kinase which phosphorylates the light harvesting chlorophyll a,b-protein complex (LHC II) and regulates energy distribution between photosystems II (PS II) and I (Staehelin, L. A., and C. J. Arntzen, 1983, J. Cell Biol., 97:1327-1337). Since reduction of plastoquinone by PS II is abolished in photoinhibited thylakoids due to loss of the secondary electron acceptor QB protein (Kyle, D. J., I. Ohad, and C. J. Arntzen, 1984, Proc. Natl. Acad. Sci. USA, 81:4070-4074), it was of interest to examine the activity of the LHC II protein kinase system during photoinhibition and recovery of PS II activity. The kinase activity was assessed both in vivo and in vitro in Chlamydomonas cells exposed to high light intensity (photoinhibition) and recovery at low light intensity. The kinase activity was progressively reduced during photoinhibition and became undetectable after 90 min. The inactive LHC II-kinase system could not be reactivated in vitro either by light or by reduction of the plastoquinone pool following addition of reduced duroquinone (TMQH2). The LHC II polypeptides were dephosphorylated in vivo when cells, prelabeled with [32P]orthophosphate before exposure to high light intensity, were transferred to photoinhibiting light in the presence of [32P]orthophosphate. In vivo recovery of the LHC II-kinase activity, elicited by the addition of TMQH2 to the assay system, did not require restoration of QB-dependent electron flow or de novo protein synthesis, either in the cytoplasm or in the chloroplast. Mild sonication of thylakoids isolated from photoinhibited cells restored the ability of the LHC II protein kinase system to be activated in vitro by addition to TMQH2. Restoration of the light-activated LHC-II kinase required recovery of QB-dependent electron flow. At the structural level, photoinhibition did not affect the ratio of grana/stroma thylakoids. A reduction of approximately 20% of the 11-17-nm intramembrane particles and an equivalent increase in the number of 6-10.5-nm particles was observed on the E-fracture faces of stacked thylakoid membranes. Similar but smaller changes were observed also on the E-fracture faces of unstacked thylakoid membranes (more 10-14-nm and less 6-9-nm particles) and P-fracture faces of stacked thylakoid membranes (more 6-8- and less 9.5-13-nm particles). All these structural changes were reversed to normal values during recovery of PS II activity.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy

Flexibility of chloroplast thylakoid membrane proteins is essential for plant fitness and survival under fluctuating light environments. Phosphorylation of light-harvesting antenna complex II (LHCII) is known to induce dynamic protein reorganization that fine-tunes the rate of energy conversion in each photosystem. However, molecular details of how LHCII phosphorylation causes light energy redi...

متن کامل

Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions.

FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for ...

متن کامل

Hypothesis on the Control of D 1 Protein Turnover by Nuclear Coded Proteins in Chlamydomonas reinhardtii

E. Bracht and A. Trebst Abteilung für Biologie, Ruhr-Universität Bochum, Postfach 102148, D-44721 Bochum, Bundesrepublik Deutschland Z. Naturforsch. 49c, 439-446 (1994); received January 31/May 13, 1994 Chlamydomonas, D 1 Protein, Photoinhibition, Photosystem II, Phosphate Deficiency A hypothesis is presented on the events in the degradation of the D 1 protein of photosys­ tem II in the light. ...

متن کامل

Thylakoid FtsH Protease Contributes to Photosystem II and Cytochrome b6f Remodeling in Chlamydomonas reinhardtii under Stress ConditionsW

FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for ...

متن کامل

Absence of the Pigments Lutein, Violaxanthin and Neoxanthin Affects the Functional Chlorophyll Antenna Size of Photosystem-ii but Not That of Photosystem-i in the Green Alga Chlamydomonas Reinhardtii

Chlamydomonas reinhardtii double mutant npq2 lor1 lacks the β,ε-carotenoids lutein and loroxanthin as well as all β,β-epoxycarotenoids derived from zeaxanthin (e.g. violaxanthin and neoxanthin). Thus, the only carotenoids present in the thylakoid membranes of the npq2 lor1 cells are β-carotene and zeaxanthin. The effect of these mutations on the photochemical apparatus assembly and function was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 103  شماره 

صفحات  -

تاریخ انتشار 1986